Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

S1. No.	Major	Intake			
	SCIENCE				
1	Bio Sciences	6**			
2	Chemistry	6			
3	Computer Science	6			
4	Environmental Science	6			
5	Physics	6			
	SOCIAL SCIENCES				
1	Development Studies	5			
2	Gandhian Studies	5			
3	History	10			
4	International Relations and Politics	10			

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University International and Inter University Centre for Nanoscience and Nanotechnology

Course Code	Title C	Credits	Hours	per Week	Level	Tuno
Course Cour		Creuits	Theory	Practicals	Level	Туре
		SEMEST	ER I			
MG1MDCUCN1 01	IntroductionNanotechnologyinMedicineandHealthcare	3	3	0	"	MDC
MG1MDCUCN1 02	Nanotechnology In Sustainable Polymers	3	3	0	"	MDC
		SEMESTI	ER II			
MG2MDCUCN1 01	IntroductionToPolymerNanotechnologyApplications	3	3	0	"	MDC
MG2MDCUCN1 02	NanotechnologyInPlastics Packaging	3	3	0	"	MDC
		SEMESTE	CR III			
MG3MDCUCN2 01	Polymers For Nanomedicine	3	3	0	"	MDC
MG3MDCUCN2 02	Impact Of Micro and Nano Plastics on The Ecosystem	3	3	0	"	MDC
MG3VACUCN20 1	Polymer Adhesives and Coatings	3	3	0	"	VAC
MG3VACUCN20 2	Nano Revolution in Green Tyre	3	3	0	"	VAC
	1	SEMESTE	CR IV			
MG4SECUCN20 1	Fiber Reinforced Polymer (FRP) Composites	3	3	0	۰۵	SEC
MG4SECUCN20 2	AI In Polymer Manufacturing and	3	3	0	"	SEC

	Characterization					
MG4VACUCN20 1	Nanostructures from Natural Origin	3	3	0	"	VAC
MG4VACUCN20 2	Fundamentals Of Nanostructured Polymer Foams	3	3	0	"	VAC
		SEMEST	ER V			
MG5SECUCN30 1	Biodegradable Polymers for Drug Delivery and Tissue Engineering	3	3	0	"	SEC
MG5SECUCN30 2	Non-Destructive Testing of Polymer Composites	3	3	0	۰۵	SEC
MG5VACUCN30 1	Natural Fiber Reinforced Polymer Composites (NFRPCs): Product Designs and Their Applications	3	3	0	"	VAC
MG5VACUCN30 2	Intellectual Property and Patenting in The Polymer Sector	3	3	0	۰۵	VAC
		SEMESTI	ER VI			
MG6SECUCN30 1	Polymer-Based 4D Printing for Advanced Manufacturing	3	3	0	"	SEC
MG6SECUCN30 3	Business Planning for Polymer Entrepreneurs	3	3	0	"	SEC
Tota	l Credits					

*Only for 4-Years Honours Students **Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level Foundation Intermediate Highe Advance PC
--

	(100-199	(200	-299)	r (300- 399)	d (400- 499)	Level (500- 599)
Туре	Major	Minor	MDC	SEC	VAC	AEC

MAHATMA GANDHI UNIVERSITY Graduate School

4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Nanotechnology in Medicine and Healthcare		
Course Type	MDC		
Course Level	100-199		
Course Code	MG1MDCUCN101		
Course Overview	This course provides an understanding of applications of nanotechnology in medical field. Students will gain knowledge about the fundamentals of nanotechnology and its various applications in medical field. They will be able to develop critical thinking skills to analyse and develop new strategies based on nanotechnology to solve medical problems.		
Semester	1	Credit	3
Total Student Learning Time	Instructional hours for theory 45 (L) + 15(T)		ctional hours for al/lab work/field work NA
Pre-requisite	Knowledge of basic chemistry and biology		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Gain a foundational understanding of	R, U, An	
	nanotechnology principles and their applications in healthcare.		
2	Understand various applications of	R, U, A, E	
	nanotechnology in medical diagnostics and		

	therapeutics.		
3	Students will critically evaluate the safety,	U, An, C, S	
	ethical considerations, and future directions		
	of nanotechnology in healthcare.		

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

COURSE CONTENT

Module 1	Hours	CO No
Fundamentals of Nanotechnology in Healthcare Introduction to Nanotechnology; Nanomaterials for Biomedical Applications; Nanotechnology-based Drug Delivery Systems	15	1
Module 2	Hours	CO No
Applications of Nanotechnology in MedicineNanotechnology in Medical Imaging; TherapeuticApplications of Nanotechnology; Nanotechnology inDisease Prevention and Control	15	2
Module 3	Hours	CO No
Safety, Ethics, and Future Directions Nanotoxicology and Safety Assessment; Emerging Trends and Future Directions; Case Studies and Applications	15	3

Mode of	Classroom Activities:
Transaction	Interactive lectures
	Group discussions and problem-solving exercises
	Quizzes and Assignments
	Field activities:
	Lab based activities:
Mode of	Internal Exams
Assessment	Semester Exam
	Assignments and Seminars

Learning Resources

- 1. Amna, T., & Hassan, M. S. (Eds.). (2021). Innovative Approaches for Nanobiotechnology in Healthcare Systems. IGI Global.
- Τ. Κ., Gayen, Κ., 2. Bhowmick, & Maity, S. Κ. (Eds.). (2024). Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. CRC Press.
- 3. Online resources Online polymer introductory courses from websites like Khan Academy, National Institute of Open Schooling (NIOS), MOOC, and NPTEL offer free learning modules on polymers
- 4. Invited lectures by visiting academic and industrial scientists. Held regularly on Wednesday afternoon and Saturday morning throughout the academic year.

Relevance of Learning the Course/ Employability of the Course

Studying nanotechnology in medicine and healthcare holds immense promise for transforming diagnostics, treatment strategies, and patient outcomes. It represents a frontier where interdisciplinary research combining nanoscience, biology, and medicine can lead to innovative solutions for challenging medical issues.

The field of nanotechnology in medicine and healthcare offers a wide range of job opportunities across various sectors. Some key job roles and areas where nanotechnology is applied include:

- Research and Development (R&D)
- Clinical Applications
- Business and Commercialization
- Academic and Education

A SANDHICK	MAHATMA GANDHI UNIVERSITY
	Graduate School
/ विद्यया अमृतमश्तुते	
	4 + 1 Integrated UG and PG Programme

	Nanotechnology (IIUCNN)		International and Inter University Centre for Nanoscience and		
	Nanotechnology (IIUCNN)				
Programme	4 + 1 Integrated UG and PG Programme				
Course Title	Nanotechnology In Sustair	able Polymers			
Course Type	MDC				
Course Level	100-199				
Course Code	MG1MDCUCN102				
Course '	This course provides a co	omprehensive	introduction to the		
Overview	exciting and rapidly evolving	g field of nanote	echnology as applied		
	to sustainable polymer sc	ience. Student	s will gain a solid		
	foundation in the principles	of nanotechno	logy, understanding		
	the synthesis, characterization, and properties of				
	nanomaterials. The course will delve into the integration of				
	nanomaterials into polymer matrices to develop advanced				
	materials with enhanced		-		
	functionality.		F,		
Semester	1	Credit	3		
	Instructional hours for theory		Instructional hours for practical/lab work/field work		
	45 (L) + 15(T)		NA		
Pre-requisite	All Discipline				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning PSO Domains No.	
	Upon completion of this course, students will be able to ;	Domains No.	
1	To understand the fundamental concepts of nanotechnology and polymer science.	R, U	
2	To explore the synthesis and characterization techniques of various nanomaterials.	R, U, C	
3	To learn about the different methods of incorporating nanomaterials into polymer matrices.	U, A	
4	To evaluate the impact of nanomaterials on the properties and performance of polymers.	R, U, An	
5	To assess the environmental and economic sustainability of polymer nanocomposites	R, U, An, E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E) , Create (C), Skill (S))

COURSE CONTENT

Module 1	Hours	CO No
Introduction to Nanotechnology and Polymers		
Overview of Nanotechnology and Its Significance, Basic	15	1
Concepts of Polymer Science, Types of Polymers and their Properties, Challenges in Conventional Polymer-Based		
Materials.		
Module 2	Hours	CO No
Nanomaterials and Polymer Nanocomposites	15	2,3,4
Classification of Nanomaterials (Carbon-Based, Metal,		
Ceramic, Etc.), Synthesis Methods (Top-Down, Bottom-		
Up), Characterization Techniques (Microscopy,		
Spectroscopy, etc.), Properties of Nanomaterials (Optical,		
Electrical, Magnetic, Etc.), Polymer Nanocomposites,		

Types of Polymer Nanocomposites (Reinforcing, Intercalated, Exfoliated), Processing Techniques for Nanocomposites, Influence of Nanomaterials on Polymer Properties (Mechanical, Thermal, Electrical, Etc.).		
Module 3	Hours	CO No
Sustainable Nanotechnology in Polymers Green Synthesis of Nanomaterials, Bio-Based Nanomaterials and Their Applications, Degradable and Compostable Nanocomposites, Life Cycle Assessment, Economic and Environmental Impact of Nanotechnology, Functional Nanopolymers (Conductive, Magnetic, Optical), Sustainable Self-Healing Polymers.	15	5

Mode of Transaction	Classroom activities:			
	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities: 			
Mode of Assessment	 Assignments Internal examination End-semester examination 			

Learning Resources

•

Relevance of Learning the Course/ Employability of the Course

This course highly relevant to addressing global challenges like climate change. It equips students with skills to innovate in materials science, creating environmentally friendly solutions. Graduates are sought after in diverse sectors such as materials engineering, chemical industry, automotive, aerospace, energy, and environmental consulting. This interdisciplinary field offers excellent career prospects and opportunities to contribute to a sustainable future.

GANDHIU	MAHATMA GANDHI UNIVERSITY
	Graduate School
िवडया अमृतमघनुने	4 + 1 Integrated UG and PG Programme

School	International and Inter Univ	ersity Centre fo	r Nanoscience and	
	Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Polymer Nanomaterials for Energy Applications			
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUCN101			
Course	This course delves into the e	exciting and raj	ting and rapidly growing field of	
Overview	polymer nanomaterials for	nanomaterials for energy applications. Students will		
	explore the synthesis, ch	aracterization,	racterization, and properties of	
	polymer-based nanostructu	res and their	s and their role in enhancing	
	energy conversion, storage, a	and utilization	technologies.	
Semester	2	Credit	3	
	Instructional hours for	Instrue	ctional hours for	
	theory	practic	al/lab work/field	
Total Student			work	
Learning Time				
	45 (L) + 15(T)		NA	
Pre-requisite	Understanding of Basic Che	nistry		

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.

	Upon completion of this course, students will be able to ;	
1	To understand the fundamental principles of polymer science and nanotechnology.	
2	To explore the synthesis and characterization techniques of polymer-based nanomaterials for energy applications.	
3	To evaluate the properties and performance of polymer nanomaterials in energy devices.	
4	To investigate the latest advancements and challenges in the field of polymer nanomaterials for energy.	
5	To develop critical thinking and problem-solving skills for addressing energy-related issues using polymer nanotechnology.	
6		

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)

Module 1	Hours	CO No
Introduction to Energy and Nanotechnology		
Energy Crisis, Sustainable Energy Sources, Basics of		
Polymer Science, Introduction to Nanotechnology and its		
Principles, Characterization Techniques for Nanomaterials		
(SEM, TEM, AFM, XRD, FTIR, Etc.)		
Module 2	Hours	
Polymer Nanomaterials for Energy Conversion		
Organic Solar Cells: Principles, Materials, Device		
Architecture, Polymer-Based Dye-Sensitized Solar Cells,		
Polymer-Based Perovskite Solar Cells, Polymer-Based		
Thermoelectric Materials and Devices.		
Module 3	Hours	

Polymer Nanomaterials for Energy Storage and Harvesting
Lithium-ion Batteries: Components, Working Principle,
And Challenges, Polymer Electrolytes and Solid-State
Batteries, Sodium-Ion Batteries and Polymer-Based
Electrodes, Supercapacitors: Principles, Materials, and
Applications, Piezoelectric and Pyroelectric Polymers,
Polymer-Based Nanogenerators, Energy Harvesting from
Ambient Sources (Solar, Wind, Vibration).

Mode of	Classroom activities:	
Transaction	 Interactive lectures Group discussions and problem-solving exercises Quizzes and Assignments Lab based activities:	
Mode of Assessment	 Assignments Internal examination End-semester examination 	

Learning Resources

- Textbooks
 - 1. Polymer Nanocomposites: Synthesis, Characterization, and Applications by Yiu-Wing Mai and Zhong-Zhen Yu
 - 2. Polymer Nanomaterials for Energy and Environmental Applications by Niranjan Karak
 - 3. Nanostructured Polymer Blends and Composites in Textiles by Visakh P. M., Long Yu
- Research articles
- Review articles

Relevance of Learning the Course/ Employability of the Course

This course equips students with cutting-edge knowledge in sustainable and renewable energy technologies, making them highly relevant in today's green energy landscape. This multidisciplinary course prepares students for careers in nanotechnology, materials science, and energy sectors, enhancing their employability in roles focused on energy storage, conversion, and generation. Proficiency in these areas meets the increasing demand for innovative solutions in the energy industry, positioning graduates at the forefront of technological

advancements.	
Tanan subunali	MAHATMA GANDHI UNIVERSITY Graduate School
	4 + 1 Integrated UG and PG Programme

School	International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN)			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Nanotechnology In Plastics	Packaging		
Course Type	MDC			
Course Level	100-199			
Course Code	MG2MDCUCN102			
Course Overview	Nanotechnology, the maniput has revolutionized various is packaging. By incorporation manufacturers can create par properties, such as increat antimicrobial activity, and such the principles, applications, in plastics packaging.	ndustries, ind ng nanomate ackaging mate sed strength, astainability. '	cluding plastics and rials into plastics, erials with enhanced barrier properties, This course explores	
Semester	2	Credit	3	
Total Student Learning Time	Instructional hours for theory		Instructional hours for practical/lab work/field work	
	45 (L) + 15(T)		NA	
Pre-requisite	All Discipline			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO No.
1	Understand the fundamentals of nanotechnology and its applications in polymer science.	U, R	
2	Explore the various types of nanomaterials used in plastic packaging and the methods of incorporating nanomaterials into plastic packaging.	U, R, An	
3	Evaluate the impact of nanotechnology on the properties and performance of plastic packaging, its application and assess the environmental and health implications of nanotechnology in packaging.	An, E	
4	Develop critical thinking and problem-solving skills related to nanotechnology in packaging.	An, E	

*(Learning Domains: Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)) COURSE CONTENT

Module 1	Hours	CO No
Introduction to Nanotechnology and	Plastics 15	1
Packaging		
Basics Of Nanotechnology and its Potential in I	Packaging,	
Overview of the Plastics Packaging Industry, Cha	allenges in	
Conventional Plastic Packaging		
Module 2	Hours	
Nanomaterials for Packaging Applications	15	2
Types of Nanomaterials (Nanoparticles, N	Vanotubes,	
Nanofibers, Etc.), Properties and Character	eristics of	
Nanomaterials, Synthesis and Chara	cterization	
Techniques, Polymer Matrix and Nat	nomaterial	

Interactions, Processing Techniques for Nanocomposites, Mechanical, Thermal, and Barrier Properties of Nanocomposites		
Module 3	Hours	
Functional Packaging with Nanotechnology	15	3,4
Antimicrobial Packaging Using Nanomaterials, Intelligent		
Packaging with Nanosensors, Active Packaging with		
Nanomaterials for Controlled Release, Biodegradable and		
Compostable Nanocomposites, Life Cycle Assessment of		
Nanomaterial-Based Packaging. Applications in Food,		
Pharmaceutical, and Medical Packaging.		

Mode of Transaction	Classroom activities:		
	Interactive lectures		
	 Group discussions and problem-solving exercises Quizzes and Assignments 		
	Lab based activities:		
Mode of	Assignments		
Assessment	• Internal examination		
	End-semester examination		

Learning Resources

- 1. Textbooks
 - Nanotechnology in Food Packaging by Vimal Katiyar, Vikas Yadav, and Saurabh Nanavati
 - Polymer Nanocomposites for Food Packaging Applications by Jasim Ahmed, Brijesh K. Tiwari, Syed H. Imam, and M.A. Rao
 - Nanotechnology-Enhanced Food Packaging by Jorge Barros-Velázquez
- 2. Journal Articles
- 3. Review Articles

Relevance of Learning the Course/ Employability of the Course

This is a highly relevant course due to the growing demand for sustainable and functional packaging solutions. Graduates of this course will possess a unique skill set, making them highly employable in the packaging industry, nanotechnology research, and related sectors. They will be equipped to develop innovative packaging materials with enhanced properties, contributing to a more sustainable future.